
EXTENDED -f* ±13 — FORTH

by

Patrick L* Mullarky

Manual and Progran Contents © 1981 Patrick !_♦ Mullarky

Copyright and right to make backup copiest On receipt of this computer program and

associated documentation (the software)* the author grants you a nonexclusive license to

execute the enclosed software and to make backup or archival copies of the computer program

for your personal use only* and only on the condition that all copies are conspicuously marked

with the same copyright notices as appear on the original* This software is copyrighted* You

are prohibited from reproducing* translating* or distributing this software in any

unauthorized manner*

TRADEMARKS OF ATARI

The following are trademarks of Atari, Inc«

ATARI

ATARI 400 Home Computer

ATARI 800 Home Computer

ATARI 410 Program Recorder

ATARI 810 Disk Drive

ATARI 820 40-Column Printer

ATARI 822 Thermal Printer

ATARI 825 80-Column Printer

ATARI 830 Acoustic Modem

ATARI 850 Interface Module

Distributed by

The ATARI Program Exchange

F* O* Box 427

155 Moffett Park Drive, B-l

Sunnyvale, CA 94086

To request an APX Software Catalog, write to the address above, or call toll-free*

800/538-1862 (outside California)

800/672-1850 (within California)

Or call our Sales number, 408/745-5535*

CONTENTS

INTRODUCTION 1

Overview 1

Required accessories 1

Optional accessories 1

Contacting the author 2

GETTING STARTED 3

Diskette version 3

Cassette version 3

Notes on this implementation 4

Editor and Assembler options 4

16K RAM limitation 4

Cold starts with SYSTEM RESET key 4

FORTH and DOS incompatability 4

7-bit and 8-bit output 4

ERROR screens 5

Disk blocks 5

DEFINITIONS 6

SAVE b

CSAVE 6

(SAVE) 6

f -DISK 6
ASCII 6

BEEF 6

BOOT 6

(FMT) 6

ok 7

PON 7

FOFF 7

FFLAG 7

GFLAG 7

PROMPT 7

Words for using the Assembler 7

NOTES 8

The cassette version 8

Modifying the dictionary 8

ASSEMBLER 9

Introduction 9

Legal exits 10

NEXT 10

PUT 10

PUSH 10

POP 10

POPTWO 11

PUSHOA 11

BINARY 11

Calling the assembler 11

CODE 11

IP 12

W 12

N 12

COLOR/GRAPHICS (& SOUND) 13

Introduction 13

Definitions 13

SETCOLOR 13

SE. 13

GR. 13

XGR 13

POS 13

PLOT 13

DRAW 14

FIL 14

G" 14

SOUND 14

FILTER! 14

DEBUG 15

Definitions 15

B? 15

CDUMP 15

DUMP 15

DECOMP 15

FREE 15

H. 15

S. 16

DISKCOPT 17

EDITOR 18

Introduction 18

Commands 18

L 18

T 18

E 18

D 18

P 19

I 19

F 19

B 19

C 19

M 19

S 19

X 19

CLEAR 19

COPT 20

MARK 20

FLOATING-POINT 21

Introduction 21

Definitions 22

FCONSTANT 22

FVARIABLE 22

FDUF 22

FDROP 22

FSWAP 22

FOVER ZZ

FLOATING 22

FP 22

F@ 22

F! 23

F. 23

F? 23

F+ 23

F- 23

F* 23

F/ 23

FLOAT 23

FIX 23

FLOG 23

FLOG10 24

FEXP 24

FEXP10 24

F0= 24

F= 24

F=< 24

Comments 24

OPERATING SYSTEM 25

Introduction 25

Definitions 25

CLOSE 25

FDTC 25

GETC 25

GETREC 25

PUTREC 25

STATUS 26

DEVSTAT 26

SPECIAL 26

FORMAT 26

BOOT850 26

FORTH BIBLIOGRAPHY 27

BIBLIOGRAPHY 28

FORTH HANDY REFERENCE 29

EDITOR, OS, AND COLOR/GRAPHICS SCREEN LISTINGS 31

INTRODUCTION

OVERVIEW

EXTENDED FIG-FORTH fully implements the standard FORTH* as defined in the Forth Interest

Group's (fig) Implementation Guide* It roughly follows the 6502 Rev* 1*1 FORTH sources

as supplied by the Forth Interest Group (FORTH INTEREST GROUP* P*O* Box 1105* San Carlos*

CA 94070)* Many changes were incorporated in adapting the sources to the ATARI Home

Computer* but the definitions* operation* and user interfaces were implemented exactly as

described in the Implementation Guide* Many additional definitions have been added*

including extended double-precision words such as 2DUF* 2SWAF* DQ* and D!* Further* the

standard FORTH Editor, and a complete Assembler for the 6502 are included, as well as a

set of ATARI Color/Graphic definitions* ATARI OS definitions* and a set of ATARI

Floating-point definitions* One new definition, SAVE , (and CSAVE) allows a

self-booting image of FORTH to be made on a diskette or cassette that will include new

definitions you add; this feature allows application packages to be produced in volume*

Definitions not implemented are DLIST, MON* and TASK* The complete set of ATARI

Screen-Editor capabilities is implemented* making editing and changing FORTH programs

simple and straightforward*

These instructions assume you are already familiar with FORTH* However* the manual does

contain two bibliographies, one for works pertaining to FORTH and a more general one*

There is also a two-page FORTH HANDY REFERENCE summary in the back*

If you're a beginning FORTH programmer* an excellent book to help you get started is

Starting FORTHt by Leo Brodie* written at FORTH* Inc** and published by Prentice-Hall*

There are some differences between FORTH Inc.'s -PolyForth11 and fig-FORTHJ the word

'S is SPQ in fig-FORTHJ the word CREATE cannot be used to create an array name

directly, as shown in the book; and the only character that defines a double-precision

value in fig-FORTH is the decimal point* whereas PolyForth allows several others* and

there are other differences between PolyForth and fig-FORTH* _

REQUIRED ACCESSORIES

Cassette version

16ERAM

ATARI 410 Program Recorder

(Note* FORTH as a computer language isn't very workable in a cassette-only

environment* But applications software using FORTH can be put onto a self-booting

cassette if desired*)

Diskette version

16KRAM

ATARI 810 Disk Drive

/—s OPTIONAL ACCESSORIES

-1-

All ATARI peripherals and accessories

(Note. Extended fig-FORTH will work with any ATARI printer using two new

definitions, PON , and POFF which turn the printer on and off. The printer does

not print the prompts as they occur on the screen, allowing very dean printouts.)

CONTACTING THE AUTHOR

Users wishing to contact the author about Extended fig-FORTH may write to him at!

206 Northside Road

Bellevue, MA 98004

or call him at:

206/453-9698

-2-

NOTES ON THIS IMPLEMENTATION

Editor and Assembler options

You have several options regarding the EDITOR and ASSEMBLER vocabularies? in addition to

the standard EDITOR* a version of the FORTH Inc. Editor has been included* It may be

loaded with a 6? LOAD command* Further, the Assembler written by Wm* Ragsdale is

supplied (use the command 75 LOAD), which is identical to the assembler used in the

Installation Guide*

16K RAM limitation

If you have only 16K of RAM you will not be able to use some of the Color /Graphics

higher-level graphics modes without interfering with the screen buffers*

Cold starts with SYSTEM RESET key

The SYSTEM-RESET key calls the "COLD11 (cold-start) function directly, so any new word

definitions that have not been SAVEd will be erased* This can be a handy feature while

debugging* press the SYSTEM RESET key to erase all your old work and leave a clean copy*

There is a negative side* if your program wanders off into never-neyer land, and you have

to press SYSTEM RESET, you'll lose all your new definitions unless you've been editing

them into new screens* (Using the standard OS screen-editing functions excludes the use

of the BREAK key for this purpose* The BREAK key is used to inform the system to ignore

the previous input string*)

FORTH and DOS incompatability

There is no compatability between FORTH diskettes and DOS (I or II) diskettes* You may

read a DOS diskette with a FORTH program, but unless you know exactly what you're doing,

writing to a DOS diskette will, in all probability, make the diskette unworkable from a

DOS point of view* The only DOS function applicable to FORTH is that FORTH expects

DOS-formatted diskettes*

7-bit and 8-bit output

The word TYPE outputs only 7 bits to the screen or printer* If you want TYPE to

output all 8-bits (which includes inverse video characters), you can type in the

following sequence*

HEX FF ' TYPE 14 + C! DECIMAL

In fact, you can make up a couple of routines if you wish*

HEX

: MODTYPE ' TYPE 14 + C! J

: 8-BITS FF MODTYPE %

\ 7-BITS 7F MODTYPE *

DECIMAL

Then, to set your system to type out 7 bits, type 7-BITS, and for 8 bits, type 8-BITS*

Further* you can use these routines in any other programs you wish* just as you would

any other word definition* If you type VLIST with TYPE set to 8-BITS then the last

character of each word will be in inverse video* The word EMIT always outputs all 8

bits in each byte* TYPE uses EMIT with a mask for 7 or 8 bits*

ERROR Screens

The ERROR screens are 13 and 14 instead of the standard 3 and 4* This is because the

self-booting FORTH interpreter* if it is present on the diskette you're using* occupies

screens 0 through 7* with 6 screens available for larger versions* If your working

diskette doesn't have a bootable FORTH on it* you may use all screens numbered 0 through

89* Disk drive 2 screens are numbered 90 through 179* The second drive may also be

accessed by the word DR1 * which sets an offset into the drive addresses for

automatically accessing the second drive* The word DRO accesses the first drive*

Alternately* the blocks are numbered 0-719 on the first drive* and 720-1439 on the second

drive*

Disk Blocks

This is fig-FORTH* NOT FORTH-79! This means that disk blocks are 128 bytes long and not

IK bytes long* Each screen is 8 blocks long* not 1 block long! A later version will be

made available* someday* using the FORTH-79 standard* but Extended fig-FORTH uses the

fig-FORTH standard*

-5-

DEFINITIONS

SAVE

This word, when executed, saves a self-booting copy of the RAM-resident FORTH program to

diskdrive 1, after setting up new parameters for COLD and FENCE • On booting upt

all definitions will be protected by FENCE , and the FORTH vocabulary will be the

current dictonary* This word uses (SAVE) described later.

CSAVE —

This word saves a self-booting copy of the RAM-resident FORTH program to the cassette

recorder* The computer will beep twice, indicating that you are to press both the FLAY

and the RECORD buttons on the recorder, followed by pressing the RETURN key on the

computer*

(SAVE) n

This word writes n blocks to disk drive 1, starting at sector 0* This word should not

be used by normal FORTH programs*

-DISK addr n2 n3 flag n4

This word performs the read/write on a disk, where addr is the starting RAM address,

n2 is the diskette sector number (0-719), n3 is the drive number (1-4), and flag is

1 for a read, and 0 for a write* On return, n4 will contain a zero if everything

went all right, or it will contain the DOS error number returned by DOS if an error

occurred* It is not expected that the normal FORTH program will use this word* The

usual disk I/O word used is R/W , which is documented in the Implementation Guide*

ASCII c —> n

This word places the binary value of character c on the top of the stack*

BEEP

This word sounds the "beep" tone on the computer's speaker*

BOOT

When executed, this word causes a cold-boot of the computer exactly as if the power were

turned off*

(FMT) nl n2

This word formats disk drive nl and returns the DOS status byte upon completion in n2

• This word is used by the word FORMAT in the OS definitions* No error checks are made

and no warnings aregiven by this word* Those functions are performed by the FORMAT word*

For more information, see the OS section in this manual*

-6-

ok

This word allows the Screen Editor (EJ) to handle the standard FORTH prompt properlyt The

interpreter can "eat" the previous "ok" prompt with no other effect. It allows you to

repeat the same input stream by placing the cursor anywhere in a previous line and

pressing the RETURN key»

PON

This word enables the printer. PFLAG is set to 1# and thereafter every character put to

the screen will be echoed on the printer except the prompts*

POFF

This word disables the printer* It sets PFLAG to zero.

PFLAG addr

This word is the printer-flag. See PON.

GFLAG addr

This word is the graphics-mode* cursor-control flag. When GFLAG is set to non-zero,

FORTH will use the alternate cursor-address variables required by the Operating System to

handle the text-window at the bottom of the screen. This variable is handled

■'"""" automatically by the various graphic commands in the Color/Graphics package.

PROMPT

This word was added to handle the extended complexities of excluding the prompt from the

printer when PFLAG is non-zero. Basically it types "ok".

Words for using the Assembler

A series of words are defined for the ASSEMBLERS

NEXT

PUSH

PUT

PUSHOA

POP

POPTWO

BINARY

IP

W

N

XSAVE

UP

Please refer to the ASSEMBLER documentation for their descriptions.

-7-

NOTES

THE CASSETTE VERSION

The cassette version of fig-FORTH contains the ASSEMBLER and DEBUG vocabularies already

loaded* Because no diskette is used, the EDITOR vacabulary is essentially useless*

Howevert printouts of the EDITORt OSt and COLOR/GRAPHICS screens are included so that you

may type them in if you wish* The cassette version is primarily for use as an

introduction to the FORTH language* and not as a software development system*

Nevertheless! the CSAVE feature allows you to develop permanent versions of your FORTH

programs* See the following section for how to erase old definitions* Note that error

messages in the cassette version type only a number* Refer to the printout of the error

message screens for their meaning* The error numbers start sequentially at screen 14*

line 1 (error 1) •

MODIFYING THE DICTIONARY

To erase a definition in your FORTH dictionary that is locked in (you get an "in

protected dictionary" message when you try to FORGET a definition) do the following*

using VLISTf find the name of the first word that you want to keep* call it XXX * and

type ' XXX FENCE ! <RETURN>* This will set the dictionary protection to your XXX word*

Then you may type FORGET name <RETURN>, where "name" is the name of the word you

wish deleted* Note that all words above "name11 are deleted* You can actually

instruct FORTH to forget everythingt so be careful* If you make an error in a new

definition that FORTH rejects for one reason or another, you may find that you cannot

FORGET the new definition, and, in fact, only VLIST seems able to find it at all! In such

cases* type the word SMUDGE and you'll be able to FORGET the word* By the way, you can

interrupt VLIST anywhere you want by pressing any key except BREAK while it is typing out

the dictionary*

"Go FORTH and conquer11

'May the FORTH be with you11

-8-

ASSEMBLER

INTRODUCTION

The ASSEMBLER vocabulary included in Extended fig-FORTH is a full-featured 6502

assembler, capable of assembling the range of assembler op-codes* It is similar to W*

Ragsdale's assembler used in the fig Installation Manual* To load it, type*

39 LOAD

As is usual in any FORTH product* the notation used in this assembler is in Reverse

Polish Notation (RPN)« This brief outline assumes you know assembly language programming %

very well, particularly in regard to the 6502* The RPN notation will seem very awkward at

first, but it allows the full power of FORTH to be brought to bear in an assembler-level

routine* The op-codes are very similar to standard 6502 op-codes* except that every one

ends with a comma* a FORTH convention for assembler-level codes* Some examples will help

describe the assembler*

LDA 123 is written as 123 LDA,

similarly*

STA 3BC0 is 3BC0 LDA,

LDA 33, X is 33 ,X LDA,

AND (45,X) is 45 X) AND,

STA (74),Y is 74)Y STA,

LDA 3374,Y is 3374 ,Y LDA,

LDX #7F is 7F * LDX, or # 7F LDA,

The current BASE value (radix) of FORTH determines whether the assembler creates hex*

. decimal, or octal values (or any radix* for that matter)*

Non-standard op-codes are the A-register shifts only* which are expressed as*

R0L*A,

instead of the standard*

ROL A

and the op-code for an indirect JMF instruction! which is*

nnnn JMPO,

instead of*

JMP (nnnn)*

Loop constructs use the words BEGIN* and END* (note the commas) and an alias for the

latter UNTIL, • The END, is preceeded by a 0= or 0= NOT construct to determine

loop termination* The termination test actually assembles as a BNE or BEQ instruction, as

in the following example*

0 ,X LDY, BEGIN, INY, 0= END, NEXT JMP,

The above routine increments the Y-Register until it is zero and exits to a routine named

NEXT. It will be assembled as!

LDY 0,X

INY

BNE x-1

JMP NEXT

The Branch instructions have been integrated into a generalized IF construct so that

they may be readily incorporated into an unlabeled branch capability* The syntax is!

IFxx, ♦♦♦ ♦♦♦ ♦♦♦ THEN*

or

IFxx* ♦♦♦ ♦♦♦ ♦♦♦ ENDIF»

where xx is the last two letters of the standard 6502 branch instructions (IFEQi

IFNE, IFMI. etc*)* The test will be made on the Status Register as appropriate to the

sense of the conditional branch* and if the test is TRUE* the code enclosed between the

IFxx* and the THEN, or ENDIF* will be executed; otherwise, the enclosed code will be

skipped* The operation of the construct is almost identical to the IF «•• THEN at the

higher-level FORTH definitions! except that nothing is popped off the stack by the IFxx.

words* Instead* a Branch instruction is assembled*

LEGAL EXITS

There are only a few legal exits from assembly language FORTH routines to the main FORTH

inner interpreter* These addresses are predefined in the main FORTH dictionary and need

no further definition by the assembly language itself* These returns use a cccc

JMF* sequencet as shown in later examples* The legal exits are •

NEXT

This is the normal return* It takes no stack action*

PUT

This places the A-Register and the first item on the hardware stack on the top of

the stack* That is* it does a 1 ,X STA, FLA, 0 *X STA, NEXT JMF,

sequence* This action overwrites whatever was previously on the top of the stack*

PUSH

This pushes down the stack and does a PUT . This action adds one item to the

stack*

FOP

This performs the DROP function*

-10-

POPTWO

This performs DROP DROP ♦

PUSHOA

This first pushes the A-Register* followed by a zero* Essentially, it pushes one

byte, the A-Register. onto the stack* adding a 16-bit word to the stack with the one

byte in the lower half*

BINARY

This word takes two words off the stack and replacea-s them with one word* The best

example is the add word + • This routine does a DROP followed by a PUT . which

overwrites the old top of the stack*

CALLING THE ASSEMBLER

The word CODE is used to call the assembler automatically when defining a new assembly

level routine. The character string following CODE will become a new FORTH word having

directly executable assembly level code* Two examples follow that do the same

thing—they multiply the top of the stack by two* using a single left shift across the

two bytes that are the top of the stack*

CODE 2* 0 ,X ASLt 1 >X ROL, NEXT JMP,

CODE *2 0 fX LDA, ASL*A, PHA, 1 ,X LDA, ROL*A,

PUT JMP,

The first routine shifts the actual memory locations of the top of the stack* This

procedure is quite short and very fast* The second routine is the more universal

method, in that the arguments are first loaded to the A-Register and later stored*

Notice that the low order byte is pushed to the hardware stack and the high-order byte is

left in the A-Register on the return to PUT ♦ The second example shows how words are

retrieved from the stack and how a return is made* To reach the second word down on the

stack* you would use 2 #X LDA. to access the low byte and 3 ,X LDA* to access the

high byte, and so on* You can increment the stack pointer (push the stack) with a DEX,

DEX* sequence* and pop the stack with an INX, INX. pair* In fact* the DROP word

does a simple INX* INX* NEXT JMP* sequence*

If your routines need the X-Register for any reason* you must save it off someplace. A

very convenient place called XSAVE is provided. Do a XSAVE STX, later followed by a

XSAVE LDX, instruction*

Several other addresses are made available as "hooks" into the FORTH system* These are

predefined words you use at your own risk (you'd better study up a bit before doing so)*

but some routines* such as in the assembler itself* need these addresses.

-11-

IP

This is the Intepreter Instruction Pointer* which points to the next word to be

executed#

w ■ ■;.'......../, . .■: "■ •■ ■■ '■■■
This is the actual execution address of the current word being executed*

N

This is a convenient eight-byte (4-word) save area where you may save your words and

bytes by storing them in N+0 . N+l , N+2 ♦♦♦ N+7*JTou can use the following

sequence to call an internal routine called SETUP. # 2 LDAf SETUP JSR, if you

want to copy the top two stack words into N+0 ♦♦♦ N+3, low bytes first* Use # 3 for

the top three stack words, and so on* This does not change the stack itself* it only

extracts copies of however many words you want*

On entry to your routine* the Y-Register will contain a zero* This fact can be handy for

clearing out bytes or registers* For example* you can dear the A-Register with a simple

TAT* instruction*

Using the assembler* like in almost any assembly level programming, is playing with fire,

and youll probably get burned from time to time* But, one of the delights of FORTH is

^^ that you can simply re-boot and try again* Careful examination of your code will

(probably dear up your problems*

Note* A good descripton of Wm* Ragsdale's assembler is in Dr» Dobb's Journal* Vol*

6, No* 9 (Sept* '81)• This assembler is quite similar on the surface* Internally, they

are totally different approaches to solving the same problem using FORTH* Reading

Ragsdale's code and reading the code for this assembler could be very instructive in the

area of assembly level FORTH programming*

-12-

COLOR/GRAPHICS (& SOUND>

INTRODUCTION

You must have already loaded the ASSEMBLER Vocabulary into your FORTH dictionary before

the COLOR/GRAPHICS definitions will LOAD properly* Once you have the ASSEMBLER loadedf

type!

50 LOAD *

A small demo program will draw a box and FIL it in Graphics Mode 5 when you enter the

word FBOX ♦ Type*

57 LOAD

FBOX

Type 57 LIST to examine the program itself*

NOTE* As in BASIC, a color value of zero is used to erase a point* Also, note that in

Graphics Mode 8» there are only two color values, zero or one.

DEFINITIONS

The following words have been defined for use with Extended fig-FORTH in programming

color graphics. Most resemble the commands used in ATARI BASIC*

f*^ SETCOLOR nln2n3

Color register nl (0..4) is set to color n2 (0..15) at luminance n3 (0..7). This

word is very similar to ATARI BASIC'S SETCOLOR command.

SE* nl n2 n3

This is a synonym for SETCOLOR using an the abbreviation used in ATARI BASIC*

GR* n -—

This word selects Graphics Mode n where n is defined as in ATARI BASIC'S "GRAPHICS

n" command, (plus modes 9. 10* and ID*

XGR

This word allows easy exit from Graphics Modes 1-8* It essentially does a w 0 GR "♦

FOS nl n2

This word sets the X (nl) and Y (n2) coordinates for the next point to be plotted.

It does not plot anything by itself* It is primarily used in the FIL word

definition.

PLOT nln2n3

/—^ This word uses the color value given by nl to plot the point at position X (n2)f

-13-

Y (n3)*

DRAW nln2n3

This word draws a line from the last plotted pointt using color value nl to the

point X(n2). T (n3).

FIL n —

This word fills the enclosed area just drawn with color value n* The ATARI BASIC

FILL command is somewhat awkward to use* Careful reading of the ATARI BASIC

Reference Manual is recommended*

G" can?

In Graphics Modes 1 or 2 this word performs the way the word •" does in text mode*

The character string cere will be compiled if in compiler mode or typed out if in

interpreter mode. The POS word may be used to position the output*

SOUND

The sound command definition is practically identical to ATARI BASIC'S SOUND definition*

But another word not present in ATARI BASIC lets you alter the "filter11 values described

_ in the HARDWARE MANUAL as AUDCTL. The word FILTER! sets this control register*

SOUND nl n2 n3 n4

This word is used as* chan freq dist vol SOUND ♦ nl is the channel number

(0-3)} n2 is the frequency* as described in the ATARI BASIC Reference Manual?

n3 is the distortion control (an even number between 0 and 14)? and n4 is the

volume (0-15)*

FILTER! nl .*«*_

This word stores a value between 0 and 255 into audio control register AUDCTL* The

default condition is 0 FILTER!* Using this control is not at all straightforward*

Please refer to the HARDWARE MANUAL if you wish to alter the contents of this

control register* Or. you can try a few different values and see what happens!

-14-

DEBUG

INTRODUCTION

Load the DEBUG package by typing*

21 LOAD

The package includes several very useful features for testing and debugging your FORTH

programs*

Each function is described below, in standard FORTH terminology*

DEFINITIONS

B?

This word types out the current BASE value (radix) without changing it* It overcomes

an intrinsic difficulty in typing only BASE ? • which always returns the value

10 no matter what the current radix is* (10 is the right answer, always*) This

word types out the value Base 10, so that if your current base is hex, B? will

type out 16 •

CDUMP addr n

This word types out n bytes in character format, starting at addr* For example, to

display the characters in any disk block, say. sector 34. type 34 BLOCK 128

CDUMP .

DUMP addr n

This word types out n bytes in numerical format using the current value of BASE*

You can go from a decimal dump to a hex dump by typing HEX first (and vice-versa).

DECOMP cax

This word decompiles the previously entered, colon definition cccc for debugging

purposes* Use this word cautiously* It is defined for the purpose of decompiling

colon definitions only* and it can go off to never-never land if you try to

decompile things like dictionary headers (e*g*. FORTH), words terminated by JCODE

or words whose definitions do not end in I * such as ABORT ♦ Most non-colon

definitions will cause the message " Primitive u to display if you try to decompile

them* Try DECOMP VUST and DECOMP Q to see the different results*

FREE

This word types out the number of free bytes of dictionary space left* NOTE that

this number will vary depending on the current graphics mode*

H* n —

This word outputs the top of the stack in hexadecimal* no matter what the current

value of BASE is* It is similar to U* (unsigned type-out)*

s*

This word prints out the contents of the stack in unsigned form using the current

BASE (radix)* It doesn't change the contents of the stack in any way* This is

easily the most useful debugging tool* During program development you will probably

use it very frequently*

.--■K--

DISKCOPY

The diskette copying routine supplied with this package is minimal. Load it into memory

by typing

36 LOAD

To invoke the copy routine, type DISKCOPT and you will be prompted for what to do*

This routine requires 32K of RAM to operate* and uses one drive to copy 90 sectors at a

time. You may interrupt the copy routine by pushing the SYSTEM RESET key when you think

it has copied enough sectors for your application* Or, you may copy single FORTH

screens, two at a time, by using the LIST and MARK words as described in the introduction*

-17-

EDITOR

< INTRODUCTION

The Editor in Extended fig-FORTH is the Screen Editor described in the Forth Interest

Group's Installation Manual* complete and unchanged* It isn't the most sophisticated

editor around* and it has some quirks that take getting used to* For example, it's

difficult to insert spaces into a line of text* But the Editor is specifically designed

to work with FORTH screens* and it's handy for that purpose*

To load the Editor into your system* put the Extended fig-FORTH diskette into drive 1 and

type:

27 LOAD

Ignore any errors regarding duplicate names* To use the Editor* you must first type

EDITOR to set the context to the Editor vocabulary* To edit a given screen* first type

n LIST to load the screen into memory*

One new word has been added to the Editor vocabulary * MARE • This word will mark

every line in the current screen (the one you last used the LIST command with) as having

been modified, so that when a subsequent FLUSH command is given* the whole screen will

be written out* It is used primarily to update backup diskettes and to duplicate single

screens onto other diskettes*

Whenever you've finished an editing session* type the word FLUSH to save your

work* It is quite important to get into the habit of doing this* If you fail to do

so. and subsequently your program bombs out* you can lose the last screen you edited*

COMMANDS

WORD FORM DOES

This word Lists the current screen* The current screen is changed by n

LIST which will list out screen n and make it the current screen*

T n T

This word Types out line n and puts the cursor at the beginning of

that line*

E n E

This word Erases line n *

D n D

This word Deletes line n and moves up all following lines* Save the

contents of the line in a buffer so that you can use an I command later,

if desired*

r

-18-

n P cccc

This word Puts the character string cccc into line n and erases the

previous contents* if any* Use this command to create new lines* The

string cccc may be any combination of characters and spaces up to 64

characters*

n I

This word Inserts the buffer from the previous D command into a line

created immediately above line n and then moves all following lines

(including n) down one line* The last line is lost*

F rrrr

This word Finds character string cccc in the current screen starting

from the current cursor position*

B B

This word Backs up the cursor over the word you just found using the F

command*

C cccc

This word inserts Character string cccc into the current line at the

current cursor position* This is the primary character-entry command (see

also P)♦

M n M

This word Moves the cursor n characters forward or backward (backward

if n is negative)*

n S

This word Spreads the current screen at line n * creating a new line

immediately preceeding line n and moving all following lines down one*

The last line will be lost*

This word extracts the character string cccc and shortens up the line*

This is the primary find-and-delete command* The X command uses the F

command• which means that the string search will commence from the current

cursor position*

CLEAR n CLEAR

This word CLEARs screen n by completely filling it with blanks* It

destroys any previous information on that screen* Note that an unused•

unCLEARed screen will be filled with hearts* which is the ATARI null

-19-

, character* CLEAR will replace the hearts with spaces*

COPT n m COPY

This word COPYs screen n onto screen m • It destroys any old

information on screen m ♦

MARK MARK ,

This word MARKs the current screen as having been modified* A subsequent

FLUSH command will cause the entire screen to be written out* Use it to

copy a single screen to another diskette*

The best way to learn the Editor is to pick an arbitrary unused screen and use the LIST

and CLEAR commands to erase it and make it the current screen* Then use the P command

to put several lines of text into the new screen* Then* try out the various commands*

one at a time* until they become somewhat familiar* Use the command FLUSH if you want

to keep the results of your work handy; otherwise* use the command EMPTY-BUFFERS to

erase all traces of your screen editing*

-20-

FLOATING-POINT

INTRODUCTION

The floating-point package uses the ATARI floating-point routines in OS ROM, exactly as

ATARI BASIC does* The routines aren't very fastf but they are easily accessible and

fairly complete (there are no transcendental functions except LOG and EXF)* Most of the

floating-point word definitions follow the conventions for double-precision words as far

as spelling goes, making them very easy to remember* ~

Before loading the floating-point package, first make sure that you have already loaded

the ASSEMBLER* Then put in the master diskette and type*

60 LOAD

The floating-point routines will be loaded into the current dictionary*

All floating-point operations assume three-word variables (fn) with few exceptions* The

only real variant from standard FORTH nomenclature occurs in the definition of

floating-point constants and variables (FCONSTANT and FVARIABLE) in that these operations

expect a floating-point number to be on the stack already* Therefore, the syntax is a bit

different from single-precision or double-precision constants and variables*

A single-precision variable would, for example, be written*

1234 VARIABLE MYNUM

whereas a floating-point variable would be written*

FLOATING 1234 FVARIABLE MYNUM

To reduce typing, the word FLOATING has been given the synonym FF •

FP 1234 FVARIABLE MYNUM

In fact, the word FLOATING or FP should precede any floating number if you wish that

number to be placed on the stack in floating-point format*

You may enter floating-point numbers in any standard Fortran MEM format*

1*234

♦00000001

-7.8945E-31

9999999

5

All the above numbers are legal floating-point numbers as long as they are preceeded by

FP or FLOATING ♦ The decimal point is optional for integer values* The package is easy to

use* Here's an exajmple of a square-root function definition*

: FSQRT FLOG FP 2«0 F/ FEXP ?

The routine expects a floating-point value on the top of the stack (top three words),

takes the natural log of the value, enters the floating-point value 2*0, divides the

-21-

numbers, and raises the result to the power "eM* This is the standard "slow11 square-root

routine used in mathematics.

DEFINITIONS : ::

The following definitions conform to the standard FORTH nomenclature, with the addition

of the symbol fn (e*g** f 1* f2), which represents a three-word floating-point number*

FCONSTANT fl — cccc

The character string cccc will be a new word, which will place the floating-point

constant f 1 on the stack* f 1 is normally preceeded by the word FLOATING or FF#

FVARIABLE f 1 — cccc

The character string cccc will be a new word* which will return the address of the

floating-point variable whose initial value will be f 1* f 1 is normally preceeded by

the word FLOATING or FP# : : : ;

FDUF fl f 1 f 1

This word duplicates the floating-point number on the top of the stack*

FDROF f 1 f2 fl

this word drops the floating-point number on the top of the stack*

FSWAF fl f2 f2 fl .

this word reverses the order (swap) of the top two floating-point numbers on the

stack*

FOVER f 1 f2 fl f2 f 1

This word copies the second floating-point number and places it on the top of the

stack.

FLOATING cccc —> f 1

This word converts the character string cccc to a floating-point number and places

it on the top of the stack* cccc must be in valid Fortran-style* floating-point

number representation* such as, 1*23 or *67E9 or -9*876E-21 or 5 • There is no

error check* If the string cccc is invalid, the value of f 1 will be undetermined*

FP cccc —> f 1

This is a synonym for FLOATING*

FQ addr fl

This word loads the floating-point number whose address is on the top of the stack*

-22-

F! fl addr

This word stores the floating-point number at the address on the top of the stack. A

total of 4 words will be dropped from the stack at the completion of F! ♦

F* fl

This word types out the floating-point number on top of the stack* The output format

will be identical to ATARI BASIC'S output format* The floating-point number will

then be dropped from the stack*

F? addr

This word types out the floating-point number whose address is on top of the stack*

F+ f 1 f2 f3

This word adds the top two floating-point numbers and places the result on the top

of the stack*

F- f 1 f2 f3

This word subtracts the floating-point number f2 from the floating-point number f 1

and places the result on the top of the stack*

F* f 1 f2 f3

This word multiplies the top two floating-point numbers and places the result on

the top of the stack*

F/ f 1 f2 f3

This word divides the floating-point number f 1 by the floating-point number f2 and

places the result on the top of the stack*

FLOAT n f 1

This word converts the integer on top of the stack is to a floating-point number and

places the result on the top of the stack*

FIX f 1 n

This word fixes the floating-point number on the top of the stack (after rounding)

and places it on the top of the stack* The range of the integer result must be

between -32768 and 32767*

FLOG f 1 f2

This word replaces the floating-point number on the top of the stack with the

number's natural logarithm*

-23-

FLOG10 fl f2

This word replaces the floating-point number on the top of the stack with the

number's log base 10*

FEXP f 1 f2

This word raises the floating-point number on the top of the stack to the power "e"

and replaces the top of the stack*

FEXF10 f 1 f2

This word raises the floating-point number on the top of the stack to the power 10

and replaces the top of the stack* -

F0= fl-—flag

This word drops the floating-point num ber from the stack and tests it* If the

number is equal to zero* a true flag (1) is placed on the stack; otherwise, a false

flag (0) is placed on the stack*

F= flf2 flag

This word drops the top two floating-point numbers from the stack and compares them*

If they're equal* a true flag (1) is placed on the stack? otherwise*^ a false flag

(0) is placed on the stack*

F=< flf2 flag

This word drops the top two floating-point numbers from the stack and compares them*

If f 1 is strictly less than f2, then a true (1) flag is placed on the stack?

otherwise* a false (0) flag is placed on the stack*

COMMENTS

This package isn't meant to be exhaustive* nor is any claim made for its level of

usefulness* However* if you need floating-point capabilities* the package works quite

well to extend the range of numbers* particularly in scientific calculations*

Trignometric functions could be added by a clever programmer. A sufficient set is BIN*

COS* and ATN* A random-number generator could also be added* In fact* any number of

features could be added*

In summary* if you can't implement your program specifications using the double-precision

capability of FORTH* then try this floating-point package*

-24-

r

OPERATING SYSTEM

INTRODUCTION

This vocabulary package implements the full set of ATARI computer's OS I/O routines* It
also adds a FORMAT commandt as well as a BOOT850 command, which downloads the RS-232 I/O
package into the system so that you may use the asynchronous I/O supplied in ROM in the
ATARI 850 Interface Module (devices MRl"f nH2"t etc*)*

Load the OS definitions package by typing*

81 LOAD

Load the BOOT850 package by typing*

83 LOAD

Be aware that the ATARI 850 I/O routines take up nearly 2K of RAM. and they are loaded

directly into the dictionary# /

DEFINITIONS

OPEN addr nl n2 n3 n4

This word opens the device whose name is at addr on channel nl with AUX1 value

n2 and AUX2 value n3* Upon return* it places the OS STATUS byte on top of the

stack* The address of the name may be obtained by storing the character name in

FAD and then referencing PAD in the OPEN command* EXAMPLE: ASCII S PAD C!

will set the character "S" into the PAD buffer* Then, PAD 3 12 0 OPEN will

open "SI" on channel 3, with AUX1 = 12 (read-and-write), and AUX2 = 0 ♦

CLOSE nl n2

This word closes channel nl and returns the status byte at the top of the stack

(n2)« The status byte will always be a 1 (operation complete, no errors)*

PUTC char nl -— n2

This word outputs the character char on channel nl and returns status byte n2*

GETC nl char n2

This word gets one character from channel nl and returns it and the status byte

n2*

GETREC addr nl n2 n3

This word inputs record to address addr but no more than nl characters from

channel n2« It returns status byte h3*

FUTREC addr nl n2 n3

This word outputs nl characters from a buffer whose address is addr to channel

-25-

n2* It returns status byte n3*

STATUS nl -— n2

This word gets the status byte from channel nl*

DEVSTAT nl n2 n3 n4

This word gets the device status bytes n2 and n3 and the normal status byte n4

from channel nl*

SPECIAL nl n2 n3 n4 n5 n6 n7 n8 n9 - -

This command is the OS "Special11 command that does anything any of the others can't*

nl thru n6 are the values of AUX1 thru AUX6 * n7 is the command byte (whatever

your device wants), and n8 is the channel number* The command returns the status

byte n9* .,

FORMAT —

This word formats a diskette* The command is self-prompting*

BOOT850

This word boots the Atari 850 Interface Module software drivers into the dictionary*

Screen 83 must be loaded to execute this command* DO NOT TRY TO EXECUTE THIS

COMMAND TWICE IN A ROW* THE SYSTEM WILL LOCK UP IF YOU DO*

-26-

BIBLIOGRAPHY

In order of technical level

1. Starting FOF.TH, Leo Brodie, Prentice-Hall

The best all-around book for anyone beginning programming..*and not just in FORTH* This quite new

book is everything one could want in a FORTH primer* It begins by assuming that you know absolutely

nothing about computers at all and leads you to some quite sophisticated programs at the end. Even

experienced programmers will learn a great deal from this fine work. HOWEVER, the text is not too

compatible with fig-FORTH. There are many examples that will cause trouble when using fig-FORTH.

Nevertheless...buy this book !! ♦♦♦♦ and read it !!!

2. Invitation to FORTH. Harry Katzan. Jr», Petrocelli Books

This book is for the total novice, and deals primarily with introducing the first-time computer user

to the fundamental concepts of computer programming! and explores FORTH somewhat casually as it

moves along* Non-novice users will become impatient with the long elementary discussions and the

awkward type-face (no descenders).

3. BYTE Magazine. Vol.5 No*6 (Aug. '80)

The FORTH-dedicated issue which helped bring the concepts of FORTH to thousands of people who

might not otherwise have ever heard of the language. Nhile the presentations are somewhat erratic in

their technical content, the whole issue deserves reading to acquire ataste for FORTH.

4. Dr. Dobb's Journal. Vol.6 No.9 (Sept. '81)

A second "dedicated issue" on the FORTH Language. This issue approaches FORTH from quite a

sm*^ philosophical point of view, and is excellent reading for the somewhat advanced programmer who. say,

(already knows several languages. The issue is a wealth of ideas and solid FORTH programs .♦♦ the
Ragsdale Assembler, for one !

5. A FORTH PRIMER, W. Richard Stevens, Kitt Peak Nat'l Observatory

This is a "self-study" guide to FORTH from the place where it all started. The FORTH described

differs somewhat from fig-FORTH, but the book is quite good. It includes some floating-point words

which are not too different from the package included with this product. -. _

6. Systems Guide to fio-FORTH, C. H. Ting, Offete Enterprises.

A complete, in-depth analysis of every fig-FORTH word used in the entire fig-FORTH vocabulary. If

you ever wondered just exactly how a word such as INTERPRET' works ... it's all here !! For the

advanced FORTH programmer.

?♦ Threaded Interpretive Languages, R. G» Loeliger, McGraw-Hill

This is a definitive work for those who want to write their own FORTH Language processor. It uses

8080 code for its examples, but the routines are so well explained that it would be quite easy to

translate the code to any other processor. The FORTH isn't exactly fig-FORTH, but the differences are

quite minor, and are easily accomodated.

8. FORTH Dimensions, the journal of the Forth Interest Group (fig) All Vols.

These bound journals are available from the Forth Interest Group, P.O. Box 1105, San Carlos, CA

94070. The FORTH Language at its best and its worst. A highly-technical journal for the FORTE addict.

C^ ALL OF THE ABOVE ARE AVAILABLE FROM:
Mountain View Press

P.O. Box 4656, Mountain View, CA 94040

(4!5)-961-4103

BIBLIOGRAPHY

GOOD BOOKS FOR LEARNING TO PROGRAM IN FORTH:

forth

FORTH Ir.c*

Beach* CA 9025^

Starting FORTH

by Leo Brodie

FORTH, Inc*

Hernoss Beach, CA 9G254

Prentice-Hall, Inc* 1981

REFERENCES FOR DEVELOPING GOOD STRUCTURED PROGRAMMING TECHNIQUES:

1* D*L* Mills, "Executive systems and software development for mini

computers,11 Proc* IEEE, vol* 61, pp* 1556-1562, November 1973*

2* -J* Koudela, Jrv* "The past, present and future of minicomputers,11

Proc* IEEE, vol* 61, pp* 1526-153^1, November 1973*

3* R* Burns and D* Savitt, "Microprogramming and stack architecture

ease the minicomputer programmer's burden," Electronics, vol* ^6,

- 15 February 1973*

^ D*E* Knuth, The Art of Computer Programming,^vol* I* Reading,

Mass** Addison-Wesley, 1968*

5* G*A* Korn, Minicomputers for Scientists and Engineers* New York:

McGraw-Hill, 1973*

THE FOLLOWING ARE AVAILABLE FROM THE FORTH INTEREST GROUP P*0*

Box 1105 SAN CARLOS, CA

Membership in FORTH Interest Group

and Volume 2(6 issues: #7 through *12)

of FORTH DIMENSIONS*

fig-FORTH Installation Manual, containing

* the language model of fig-FORTH, a

complete glossary, memory map, and

installation instruction♦

Assembly language source listing of fig-

FORTH for specific CPU's* The above

manual is required for installation*

Specify the desired CPU*

-22-

FORTH HAUBY

Stack inputs and outputs are shown; top of stack on right.

This card follows usage of the Forth Interest Group

(S.F. Bay Area); usage aligned with the Forth 78

International Standard.

For more info: Forth Interest Group
P.O. Box 1105

San Carlos. CA 94070.

d, d1...

u

addr

b

c

f

16-bit signed numbers

32-bit signed numbers

16-bit unsigned number

address

6-bit byte

7-bit ascii character value

boolean flag

- n)

Duplicate top of stack.

Throw away top of stack.

Reverse top two stack items.

Make copy of second item on top.

Rotate third item to top.

Duplicate only if non-zero.

Move top item to "return stack" for temporary storage (use caution).
Retrieve item from return stack.

Copy top of return stack onto stack.

NUMBER BASES
DECIMAL (-)

HEX < -)

BASE < - addr }

Set decimal base.

Set hexadecimal base.

System variable containing number base.

ARITHMETIC AND LOGICAL
Add.

Add double-precision numbers.

Subtract (n1-n2).

Multiply.

Divide (n1/n2).

Modulo (/.e. remainder from division).

Divide, giving remainder and quotient.

Multiply, then divide <M*n2/n3). with double-precision intermediate.

Like VMOD. but give quotient only.

Maximum.

Minimum.

Absolute value.

Absolute value of double-precision number.

Change sign.

Change sign of double-precision number.

Logical AND (bitwise).

Logical OR (bitwise).

Logical exclusive OR (bitwise).

True if ni lesa than n2.

True if n1 greater than n2.

True If top two numbers are equal.

True if top number negative.

True if top number zero (/.e., reverses truth value).

Replace word address by contents.

Store second word at address on top.

Fetch one byte only.

Store one byte only.

Print contents of address.

Add second number on stack to contents of address on top.

Move u bytes in memory.

Fill u bytes in memory with b. beginning at address.

Fill u bytes in memory with zeroes, beginning at address.

Fill u bytes in memory with blanks, beginning at address.

Set up loop, given index range.

Race current index value on stack.

Terminate loop at next LOOP or +LOOP.

Uke DO ... LOOP, but adds stack value (instead of always '1') to index.

If top of stack true (non-zero), execute. [Note: Forth 78 uses IF... THEN.)

Same, but If false, execute ELSE clause. [Note: Forth 78 uses IF... ELSE... THEN.)

Loop back to BEGIN untfl true at UNTIL [Note: Forth 78 uses BEGIN ... END.)

Loop while true at WHILE; REPEAT loops unconditionally to BEGIN.
(Note: Forth 78 uses BEGIN ... IF ... AGAIN]

-23-

TERMINAL INPUT-OUTPUT
Pnnt number.

Print number, right-justified in field.

Print double-precision number.

Print double-precision number, right-justified in field.

Do a carnage return.

Type one space.

Type n spaces.

Print message (terminated by ").

Dump u words starting at address.

Type string of u characters starting at address.

Change length-byte string to TYPE form.

True if terminal break request present.

Read key. put ascii value on stack.

Type ascii value from stack.

Read n characters (or until carriage return) from input to address.

Read one word from input stream, using given character (usually blank) as delimiter.

Convert string at address to double-precision number.

Start output string.

Convert next digit of double-precision number and add character to output string.

Convert all significant digits of double-precision number to output string.

Insert sign of n into output string.

Terminate output string (ready for TYPE).

Insert ascii character into output string. - -■■ ■

List a disk screen.

Load disk screen (compile or execute).

Read disk block to memory address.

System constant giving disk block size in bytes.

System variable containing current block number.

System variable containing current screen number.

Mark last buffer accessed as updated.

Write all updated buffers to disk.

Erase all buffers.

DEFINING WORDS
: xxx (—

VARIABLE xxx

CONSTANT xxx

CODE xxx

.CODE

n —

xxx:

n —

xxx: (

- addr)

I

- n)

< BUILDS ... DOES> does: (- addr)

Begin colon definition of xxx.

End colon definition.

Create a variable named xxx with initial value n; returns address when executed.

Create a constant named xxx with value n; returns value when executed.

Begin definition of assembly-language primitive operation named xxx.

Used to create a new defining word, with execution-time "code routine" for this data

type in assembly.

Used to create a new defining word, with execution-time routine for this data type in

higheHevel Forth.

Returns address of pointer to context vocabulary (searched first).

Returns address of pointer to current vocabulary (where new definitions are put).

Main Forth vocabulary (execution of FORTHsets CONTEXT vocabulary).

Editor vocabulary; sets CONTEXT.

Assembler vocabulary; sets CONTEXT.

Sets CURRENT vocabulary to CONTEXT.

Create new vocabulary named xxx.

Print names of all words in CONTEXT vocabulary.

MISCELLANEOUS AND SYSTEM

Begin comment, terminated by right paren on same line; space after (.

Forget all definitions back to and including xxx.

Error termination of operation.

Find the address of xxx in the dictionary; if used in definition, compile address.

Returns address of next unused byte in the dictionary.

Returns address of scratch area (usually 68 bytes beyond HERE).

System variable containing offset into input buffer; used. e.g.. by WORD.

Returns address of top stack item.

Leave a gap of n bytes in the dictionary.

Compile a number into the dictionary.

Forth Interest Group, P.O. Box 1105, San Carlos, CA 94070

SCR * 21

• 0 (DEBUGGER AIDS — DUMP , CDUMP) .-*

2 BASE G HEX <3 ̂
3

4 02FE CONSTANT DSPFLG ^
5

6

7 I DSP.ON 0 DSPFLG ! ,*

8 : DSP.OFF 1 DSPFLG ! J

9 (USED BY "DUMP1)

10

11 : H. BASE G HEX U. BASE ! J

12

13 ! B? BASE G DECIMAL . BASE ! J

14

15 —>

SCR #22

0 (DEBUGGER AIDS — DUMP , CDUMP)

1 DECIMAL

2 : ?EXIT ?TERMINAL

3 IF LEAVE ENDIF }

4 J U.R 0 SWAP D.R J

5 J LDMP DUP 8 + SWAP DO I CG 4 .R

6 LOOP}

7 s dump over + swap do cr i 5 u.r i

8 ldmp ?exit 8 +loop cr }

9 : cdmp dup 16 + swap do

10 i cg emit loop j

11 {cdump over + swap do cr i 5 u.r i

12 space dsp.off cdmp dsp.on

13 ?exit 16 +loop cr ;

14

15 —>

SCR # 23

0 (STACK PRINTER)

1

2 HEX

3

4 J DEPTH SPG 12 +ORIGIN G SWAP -2/',

5 J S. (PRINTS THE STACK)

6 DEPTH -DUP IF

7 0DO CR ."TOP+"I.

8 SPG I 2 * + G U. LOOP

9 ELSE ." Stack Empty" THEN CR J

10

11

12

13 BASE !

14

15—>

SCR # 24

0 (DEFINITION TRACER)

1 BASE G HEX

2 0 VARIABLE .WORD

3 ' CUT CFA CONSTANT .CLIT

4 ' OBRANCH CFA CONSTANT 2BRAN

5 ' BRANCH CFA CONSTANT BRAN

6 ' ,'S CFA CONSTANT SEMIS

7 ' (LOOP) CFA CONSTANT PLOOP

8 ' (+LOOP) CFA CONSTANT PPLOOP

9 ' (.") CFA CONSTANT PDOTQ - 3/ ~

10

11

12

13

PWORD 2+ KFA ID. \

1BTTE PWORD .WORD Q CQ , 1 .WORD +! ?

1WORD FWORD .WORD @ @ . 2 .WORD +! J

NP DUP SEMIS = IF PWORD CR CR

14 PROMPT QUIT THEN 7TERMINAL IF

15 PROMPT QUIT THEN ', ~>

SCR #25

0 (DEFINITION TRACER)

1

2 : BRNCH PWORD ." to " .WORD G .WORD G G + . 2 .WORD +! J

3

4 : STG PWORD 22 EMIT .WORD G DUP COUNT TYPE 22 EMIT

5 CG .WORD G + 1+ .WORD ! I

6

7 ' UT CFA CONSTANT .LIT ,«

8

9 J CKIT DUP ZBRAN = OVER BRAN =

10 OR OVER PLOOP = OR OVER PPLOOP =

11 OR IF BRNCH ELSE DUP .LIT ■

12 IF 1WORD ELSE DUP .CUT = - -

13 IF 1BYTE ELSE DUP PDOTQ = IF STG

14 ELSE PWORD THEN THEN THEN THEN J

15—>

SCR #26

0 (DEFINITION TRACER)

1 ' i 12 + CONSTANT DOCOL

2 • • ■ \ . .. : -

3 J T?PR CR CR ." Primitive" CR CR }

4 J ?DOCOL DUP 2 - G DOCOL - IF

5 T?PR PROMPT QUIT THEN J

6

7 : SETUP CCOMPILE3 ' ?DOCOL .WORD ! }

8

9 J NXT1 .WORD G U. 2 SPACES .WORD

10 G G 2 .WORD +! !

11

12 J DECOMP SETUP CR CR BEGIN NXT1 NP

13 CKIT CR AGAIN ',

14

15 BASE ! JS

SCR # 27

0 (♦♦ EDITOR **)

1

2 BASEG HEX

3

4 (THIS EDITOR IS PATTERNED AFTER

5 (THE EXAMPLE EDITOR IN THE fig

6 ("INSTALLATION MANUAL" 8/80 WFR

7

8 : TEXT HERE C/L 1+ BLANKS WORD

9 HERE PAD C/L 1+ CMOVE i

10

11 : LINE DUP FFFO AND 17 7ERROR SCR

12 G (LINE) DROP }

13

14 J MARK 10 0 DO I LINE UPDATE

15 DROP LOOP J —>

SCR #28

0 (LINE EDITOR DEFS)

1 VOCABULARY EDITOR IMMEDIATE

2 5 WHERE DUP B/SCR / DUP SCR ! ." SCR # " DECIMAL .

3 SWAP C/L /MOD C/L * ROT BLOCK + CR C/L -TRAILING TYPE CR HERE

4 - SPACES 5E EMIT CCOMPILE3 EDITOR QUIT }

5

6 EDITOR DEFINITIONS

#LOCATE R# @ C/L /MOD ',

#LEAD #LOCATE LINE SWAP J

#LAG #LEAD DUP >R + C/L R> - } ?

10

11 : -MOVE LINE C/L CMOVE UPDATE J

12

13

14

15 —>

SCR # 29

0 (LINE EDITING COMMANDS)

1 { H LINE PAD 1+ C/L DUP PAD C!

2 CMOVE J

3 I E LINE C/L BLANKS UPDATE J

4 1 S DUP 1 - 0E DO I LDSE I 1+

5 -MOVE -1 +LOOP E ',

6 : D DUP H OF DUP ROT

7 DO I 1 + LINE I -MOVE LOOP E J

8

9

10 —>

11

12

13

14

15

SCR # 30

0 (LINE EDITING COMMANDS)

1

2 J M R# +! CR SPACE #LEAD TYPE

3 17 EMIT #LAG TYPE #LOCATE

4 .DROP J

5 : T DUP C/L * R# ! DUP H 0 M J

6JL SCRQLISTOMJ

7 J R PAD 1+ SWAP -MOVE \

8 t P 1 TEXT R J

9 JI DUP S R I

10 : TOP 0 R# ! J

11

12

13 —>

14

15

SCR # 31

0 (SCREEN EDITOR COMMANDS)

1

2

3 : CLEAR SCR ! 10 0 DO FORTH I

4 EDITOR E LOOP ',

5

6

7

8

9
10 J COPT B/SCR # OFFSET @ + SWAP

11 B/SCR * B/SCR OVER +

12 SWAP DO DUP FORTH I

13 BLOCK 2 - ! 1+ UPDATE

14 LOOP DROP FLUSH J

15 —>

SCR # 32

■ 0 (STRING EDITING COMMANDS)

1

2 ! 1LINE #LAG PAD COUNT MATCH R#

4

5

6 J FIND BEGIN 3FF R# @ < IF TOP

7 PAD HERE C/L 1+ CMOVE 0

3 ERROR ENDIF 1LINE UNTIL

9 J

10

11 : DELETE >R #LAG + FORTH R -

12 #LAG R MINUS R# +! #LEAD

13 + SWAP CMOVE R> BLANKS

14 UPDATE?

15 —>

SCR #33

0 (SCREEN EDITING COMMANDS)

1

2 : N FIND 0 M J

3 - . -.

A IF 1TEXTNJ

5

6 J B PAD CQ MINUS M-J

7

8 J X 1 TEXT FIND PAD C@ DELETE

9 OMJ

10

11 : TILL #LEAD + 1 TEXT 1LINE 0=

12 0 7ERROR #LEAD + SWAP -

13 DELETE 0 M ',

14

15 —>

SCR # 34

0 (SCREEN EDITING COMMANDS)

1

2 S C 1 TEXT PAD COUNT #LAG ROT

3 OVER MDS >R FORTH R R# +!

4 R - >R DUP HERE R CMOVE

5 HERE #LEAD + R> CMOVE R>

6 CMOVE UPDATE 0 M J

7

8

9 FORTH DEFINITIONS DECIMAL

10

11 LATEST 12 +ORIGIN !

12 HERE 28 +ORIGIN !

13 HERE 30 +ORIGIN !

14 ' EDITOR 6 + 32 +OFJGIN !

15 HERE FENCE ! JS

SCR # 35

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

SCR # 36

0 { DISK COPY ROUTINE 40K RAM)

1 (40 K RAM AND DRIVES #1 AND #2)

2

3 24576 CONSTANT BUFHEAD

4 0 VARIABLE BLK# 0 VARIABLE ADRS

5 : GET ADRS @ BLK# 6 >

6 \ RD GET DUP 713 = IF LEAVE THEN 1 R/W }

7 t WRT GET 720 + DUP 1433 = IF LEAVE THEN 0 R/W \

8 J +BLK 1 BLK# +! 128 ADRS +! J

9 J SETUP BLK# ! BUFHEAD ADRS ! J

10

11 ! RDIN SETUP 90 0 DO RD +BLK

12 LOOP I

13tWRTO SETUP 90 0 DO WRT+BLK

14 LOOP?

15—>

SCR # 37

0 (DISK COPY ROUTINE)

1

2 (INSERT SOURCE DISK IN DRIVE #1

3 (AND NEW DISK IN DRIVE #2. THEN,

4 (SIMPLY TYPE "DISKCOPY" !

6 J MSI CR CR

7 ." INSERT SOURCE IN DRIVE #1 AND"

8 CR ." NEW DISK IN DRIVE #2" CR

9 ." HIT ANY KEY WHEN READY..."

10 KEY DROP \

11

12 I %COPY 0 DO I 90 *

13 DUP DUP RDIN WRTO

14 90+ .LOOP}

15—>

SCR # 38

0 (DISK COPY ROUTINE)

1

2

3 : DISKCOPY CR MSI CR 8 %COPY }

4

5

6 J FORTHCOPY CR MSI CR 5 %COPY J

7

e;s

9

10

11

12

13

14

15

SCR # 39

0 (♦* ASSEMBLER ** IS. FORTH)

1

2 (ASSEMBLER COMFORMS TO THE

3 (fiq -INSTALLATION GUIDE" WITH

4 (THE FOLLOWING EXCEPTIONS:

5

6(SHIFTS ARE.* "XXX.A" FOR A-REG.

7(SHIFTS.

8(CONDITIONAL BRANCHES ARE

? (PATTERNED AFTER THE BRANCH OP-

i6 (codes: "ifecv1 is used in-
11 (STEAD OF "0= IF," FOR BETTER

12 (CLARITY. SEE SCREEN 43.

13

14

15 —>

SCR #40

0 (ASSEMBLER VOCABULARY >

1 ■■■■"

2 VOCABULARY ASSEMBLER IMMEDIATE

3

4 BASE @ HEX

5

6 { CODE [COMPILE] ASSEMBLER -

7 CREATE SMUDGE I

8 . •■

9 ASSEMBLER DEFINITIONS .

10

11 : SB <BUELDS C, DOES> Q C, }

12 (SINGLE BYTE OPERATORS)

13

14

15 —>

SCR #41

0 (SINGLE-BYTE OPERANDS)

1

2 00 SB BRK, 18 SB CLC, D8 SB CLD,

3 58 SB CLI, B8 SB CLV, CA SB DEX,

4 88 SB DEY, E8 SB INX, C8 SB INY,

5 EA SB NOP, 48 SB FHA, 08 SB PHP,

6 68 SB FLA, 28 SB PLF, 40 SB RTI,

7 60 SB RTS, 38 SB SEC, F8 SB SED,

8 78 SB SEI, A3 SB TAX, BA SB TSX,

9 8A SB TXA, 9A SB TXS, 98 SB TYA,

10 i

11 0A SB ASL.A, 2A SB ROL.A,

12 4ASBLSR.A, 6A SB ROR.A,

13

14 J NOT 0= J (REVERSE LOGICAL)

15 t 0= 1 } (PUSH A TRUE) —>

SCR # 42

0 (JMP, JSR, BRANCH CODES)

1

2J3BY <BUILDS C, DOES> @ C, , }

3

4 4C 3BY JMF, 6C 3BY JMPO,

5 20 3BY JSR,

6

7 : ?ER5 5 ?ERROR J

8

9tIF. <BUILDS C, DOES> C@ C, 0

10 C, HERE }

11 .* THEN, DUP HERE SWAP - DUP

.12 7F > ?ER5 DUP -80 < ?ER5

13 SWAP-l + C!?

14:endif, then, j

15—>

SCR # 43

0 (CONDITIONAL BRANCH CODES)

1

2 10 IF. IFFL, (BFL)

3 30 IF. IFMI, (BMI)

4 50 IF. IFVC, (BVC)

5 70 IF. IFVS, (BVS)

6 90 IF. IFCC, (BCC)

7B0IF.IFCS, (BCS)

8 DO IF. IFNE, (BNE)

9F0IF. IFEQ, (BEQ)

10

11 t BEGIN, HERE }

12 5 END, IF DO ELSE FO THEN C,

13 HERE 1+ - DUP

14 -80<?ER5C, 1

15 i UNTIL, END, J —>

SCR # 44

0 (MEMORY-REFERENCE INST.)

1

2 OD VARIABLE MODE (ABS. MODE)

3 -■. ■■■■-.._•... ■ .-■-. :■■•>■.■...- ■-- ■

4 J MODE* MODE Q = J (CK MODE)

5J256< DUF100(HEX)<;

6JMODEFIX 256< IF-08 MODE+!

7 THEN?

8 (MODE=MODE-8 IF ADRC256)

9JCKMODE MODE= IF MODEFIX

10 THEN J

11 : MO <BUILDS C, DOES> SWAP

12 0DCKMODE ID CKMODE SWAP

13 C@ MODE @ OR C, 256<C IF

14 C, ELSE , THEN OD MODE ! J

15—>

SCR # 45

0 (MEMORY REF. INST.)

1

2 ! X) 01 MODE !

3:# 09 MODE!

4I)Y 11 MODE!

5:,X ID MODE

6 : ,Y 19 MODE !

(CADDR,X3)

(IMMEDIATE)

(CADDR3,Y >

(ADDR,X)

(ADDR,Y)

7

8

9 00 MO ORA, 20 MO AND, 40 MO EOR,

10 60 MO ADC, 80 MO STA, AO MO LDA,

11 CO MO CMP, EO MO SBC,

12

13? BIT, 256< IF 24 C, C, ELSE

14 2CC, ,THEN.5

15—>

SCR # 46

0 (MEMORY REF. INC, CPX, ETC.)

1

2 : STOREADD C, 256< IF C, ELSE ,

/-^ 3 THEN OD MODE ! \

' 4
5 J ZPAGE OVER 100 < IF F7 AND

6 THEN J

7 : XYMODE MODE G 19 = MODE & ID

8 = OR J

9 J Ml <EUILDS C, DOES> C@ MODE @

10 ID = IF 10 ELSE 0 THEN OR

11 ZPAGE STOREADD J

12

13 0E Ml ASL, 2E Ml ROL, 4E Ml LSR,

14 6E Ml ROR, CE Ml DEC, EE Ml INC,

is —>

SCR # 47

0 (MEMORY REF. INST.)

1

2 J OPCODE C@ ZPAGE XTMODE IF 10

3 OR THEN ;

4 J M2 <BUTLDS C, DOES> OPCODE

5 MODE @ 9 = IF 4 - THEN

6 STOREADD}

7

8 AC M2 LDYf AE M2 LUX,

9 CC M2 CFY, EC M2 CFX,

10

11 : M3 <BUILDS C, DOES> OPCODE

12 STOREADD 1

13

14 8C M3 STY, 8E M3 STX,

15—>

SCR # 48

0 (END OF ASSEMBLER)

1

2 FORTH DEFINITIONS

3

4

5 LATEST 0C+ORIGIN ! (NTOP)

7 HERE 1C +ORIGIN ! < FENCE)

8

9 HERE IE +ORIGIN ! (DP)

10

11

12

13

14

15 BASE ! JS

SCR # 49

0

1

2

3

4

5

6

7

9

10

11

12
13

14

15

SCR # 50

0 (COLOR COMMANDS)

1 BASE (a HEX

2 : SETCOLOR 2 « SWAP 10 ♦ OR SWAP

3

4 J SE. SETCOLOR \ (ALIAS)

5

• 6 i REGISTER#-3, COLOR-2, LUM-1

7

S< 0-3 0-F 0-7

10 —>

11

12

13

14

15

SCR # 51

0 (GRAPHICS COMMANDS)

1 E454. CONSTANT CIO

2 1C VARIABLE MASK

3 340 CONSTANT IOCB

4 53 VARIABLE SNAME

5 .

6 CODE GR. 1 # LDA, GFLAG STA,

7 XSAVESTX, 0,XLDA,

8 # 30 LDX, IOCB 0B + ,X STA,

9#3LDA, IOCB2 + ,XSTA,

10 SNAME FF AND # LDA, IOCB 4 + ,X

11 STA, SNAME 100 / # LDA,

12 IOCB 5 + ,X STA, MASK LDA,

13 IOCB 0A + ,X STA, CIO JSR,

14 XSAVE LDX, 0 # LDT, POP JMP,

15 —>

SCR # 52

0 (GRAPHICS COMMANDS)

1

2 CODE &GR XSAVE STX, # 30 LDX,

3 #CLDA, IOCB 2 +

4 ,XSTA, CIO JSR,

5 XSAVE LDX, 0 # LDA,

6 GFLAG STA, NEXT JMP,

7

8 : XGR &GR 0 GR &GR J

9 (EXIT GRAPHICS MODE)

10

11 —>

12

13

14

15

SCR # 53

0 (GRAPHICS I/O)

1

2CODECPUT 0,XLDA, PHA,

3 XSAVESTX, #30 LDX,

4 # B LDA, IOCB 2 + ,X STA, TTA,

5 IOCB 8 + ,X STA, IOCB 9 + ,X

6 STA, FLA, CIO JSR, XSAVE LDX,

7 POP JMP,

8

9 54 CONSTANT ROWCRS

10 55 CONSTANT COLCRS

11

12 : P3S ROWCRS C! COLCRS ! J

13 : PLOT POS CPUT J

14

15 —>

SCR # 54

0 (GRAPHICS I/O)

1

2 : GTYPE -DUP IF OVER + SWAP

3 DO I C@ CPUT LOOP ELSE

4 DROP ENDIF J

5

6 : <G"> R COUNT DUP 1+ R> + >R

7 GTYPE}

8

9 ! G" 22 STATE @ IF COMPILE <G")

10 WORD HERE CQ 1+ ALLOT

11 ELSE WORD HERE COUNT GTYPE

12 ENDIF J IMMEDIATE

13

14

15 ~>

SCR #55

0< DRAW, FIL)

1

2 2FB CONSTANT ATACHR .

3 2FD CONSTANT FILDAT

4

5 CODE GCOM XSAVE STX, 0 ,X LDA,

6 #30 LDX, IOCB 2 + ,X STA,

7 CIO JSR, XSAVE LDX, POP JMP,

8

9 : DRAW POS ATACHR C! 11 GCOM \

10

11 : FIL FILDAT C! 12 GCOM J

12 ■

13 BASE! JS

14

15

SCR # 56

0 (GRAPHICS TESTS)

1

2 J BOX 0 10 10 PLOT 1 50 10 DRAW

3 1 50 25 DRAW 1 10 25 DRAW

4 1 10 10 DRAW ,'

5

6IFBOX XGR 5GR. BOX

. 7 10 25 POS 2 FIL \

8

9

10

11

12

13

14

15

SCR #57

0

1

2

;
5

6

7

8

9

10

11

12

13

14

15

SCR # 58

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

SCR # 59

0

1

2

3

4

5

7

8

9

10

11

12

13

14

15

SCR # 60

0 (floating point words)

1 base® decimal

2:fdrop drop drop drop ;

3 j fdup >r >r dup r> dup rot

4 swap r rot rot r> i

5 code fswap

6 xsave stx, # 6 ldy,

7 begin, 0 ,x lda, fha, inx, dey,

8 0= end, xsave ldx, # 6 ldy,

9 begin, 6 ,x lda, 0 ,x sta, inx,

10 dey, 0= end, xsave ldx, # 6 ldy,

11 begin, fla, 11 ,x sta, dex, dey,

12 0= end, xsave ldx, next jmp,

13 HEX

14 XSAVE 100 #'86. + CONSTANT XSAV

15 : XS, XSAV , J —>

SCR # 61

0 (FLOATING POINT WORDS)

1 CODE FOVER DEX, DEX, DEX,

2 DEX, DEX, DEX, XSAVE STX,

3 # 6 LDY, BEGIN, 12 ,X LDA,

4 0 ,X STA, INX, DEY, 0= END,

5 XSAVELDX, NEXT JMP,

6

7 XSAVE 100 * A6 + CONSTANT XLD

8 : XL, XLD , J

10 CODE AFP XS, DS00 JSR, XL, NEXT JMP,

11 CODE FASC XS, DSS6 JSR, XL, NEXT JMP,

12 CODE IFP XS, D9AA JSR, XL, NEXT JMP, —>

13

14

15

SCR #62

0 (FLOATING POINT WORDS)

1

2 CODE FPI XS, D9D2 JSR, XL, NEXT JMP»

3 CODE FADD XS, DA66 JSR, XL, NEXT JMP,

4 CODE FSUB XS, DA60 JSR, XL, NEXT JMP,

5CODEFMUL XS, DADB JSR, XL, NEXT JMP,

6CODEFDIV XS, DB28 JSR, XL, NEXT JMP,

7CODEFLG XS, DECD JSR, XL, NEXT JMP,

8 CODE FLG10 XS, DED1 JSR, XL, NEXT JMP,

9CODEFEX XS, DDCO JSR, XL, NEXT JMF,

10 CODE FEX10 XS, DDCC JSR, XL, NEXT JMP,

11 CODE FPOLY XS, DD40 JSR, XL, NEXT JMP,

12 —>

13

14

15

SCR # 63

0 (FLOATING POINT WORDS)

1

2 D4 CONSTANT FRO

3 E0 CONSTANT FR1

4 FC CONSTANT FLPTR

5 F3 CONSTANT INBUF

6 F2 CONSTANT CIX

7

8 DECIMAL

9

10

11 —>

12

13

14

15

SCR #64

0 (FLOATING POINT)

1

2:F(a>RR@R2+@R>4 + e;

3 : F! >R R 4 + ! R 2+ ! R> ! J

4 HEX

5JF.TY BEGIN INBT7F Q CQ DUP

6 7F AND EMIT 1 INBUF +!

7 80 > UNTIL?

8 DECIMAL
Q

10 j f. fro f@ fswap fro f! fasc

11 f.ty space fro f! j

12 :f? f@f. ;

13

14—>

15

SCR # 65

0 C FLOATING POINT)

1

2 J <F ER1 F! FRO F! J

3 J F> FRO F(? }

4 : FS FRO F! }

5

6 t F+ <F FADD F> J

7:f- <ffsubf>;

s : f* <f fmul f> }

9 : F/ <F FDIV F> 1

10 J FLOAT FRO ! IFP F> }

11 :FIX FSFPIFR0(? J

12 5 FLOG FSFLGF>J

13 J FLOG10 FS FLG10 F> J

14 : FEXP FS FEX F> ',

15 : FEXP10 FS FEX10 F> J —>

SCR #66

0 (FLOATING POINT)

1 HEX

2 : ASCF 0 CIX ! INBUF ! AFP F> J

•3.....-.- .— :p ,■ ■..-.., . ■:

4 : FLIT R> DUP 6 + >R FG J

5 J FLTTERAL STATE Q IF

6 COMPILE FLIT HERE F! 6 ALLOT

7 ENDIFJ

8 : FLOATING (FLOAT FOLLOWING CONSTANT)

9 BL WORD HERE 1+ ASCF

10 flzteral; immediate

11 (ex: floating 1.2345 >

12 (OR FLOATING -1.67E-13)

13

14 J FP [COMPILE] FLOATING J

15 IMMEDIATE —>

SCR # 67

0 (FLOATING POINT)

1 HEX

2 : FVARIABLE

3 <BUILDS HERE F! 6 ALLOT DOES> J

4

5 : FCONSTANT

6 <BUILDS HERE F! 6 ALLOT DOES>

7 FQ}

8

9:fo= ororo=;

10 : f= f- fo= ;

11 : f< f- drop drop 80 and 0 > }

12

13

14

15 BASE ! ;S

